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Abstract—Detection and tracking of dynamic traffic objects
such as pedestrians, cyclists, and surrounding ground vehicles
is an important part of the perception of Autonomous Vehicle
(AV). In practice, the presence of noise corrupts sensors’ ideal
performance, causing detection and state estimation of moving
objects to be erroneous. These detection errors propagate
through the overall system and potentially compromise the
reliability and safety of the AV. To get an assurance that the
vehicle will operate safely, any simulation platform for an AV
must include a realistic representation of the fallacies in vehicle’s
perception. In this study, the perception error for a vision based
detection algorithm of the camera sensor is modeled by applying
auto-regressive moving average (ARMA) and nonlinear auto-
regressive (NAR) method. It will enable statistical error values
to be injected into ideal values obtained from simulation models.
The proposed approach is evaluated based on several test case
scenarios using various environmental and traffic information.
A comparative analysis of the behavior of the AV with and
without perception error model for the imperfection of camera
sensor has been undertaken using the CarMaker platform. The
investigation of the impact on the behavior of the AV by the
variation of the state (distance, brake-torque) clearly depict the
effectiveness of incorporating the error model at detection level
in CarMaker.
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I. INTRODUCTION

AVs have the potential to overcome a majority of traffic
accidents caused due to the lack of human drivers’ attention
[1]. Simulation is being progressively incorporated for the
development of AV systems because it permits the testing
of a larger number of scenarios than would be viable with
real-world testing, including risky situations which involve
humans [2]. Hence, testing in virtual worlds is more secure,
more proficient, and less expensive than real world testing
[3].

A series of sensors such as lidar, radar, cameras are re-
quired to comprehend the surrounding environment in which
the vehicle is traveling in real time and behave accordingly
[4]. To predict and plan accurately, segmentation of the
scene, exact localization of each traffic object, and their state
estimation are essential features [5]. Due to imperfections
of the sensors, several challenges in segmentation and mo-
tion inference might arise. For example, the estimations of
depth by lidar experience the effects of noise, incorporate

wrong reflections, and contain missing information. Cam-
era images are rich and dense but, lack depth information
[6]. In addition, external noise, lighting conditions such as
sunny, cloudy, dark etc. have an adverse impact on them.
In adverse weather conditions, some of the sensors might
become untrustworthy and create visibility problems [7].
Thus, moving traffic objects such as cars, pedestrians, cyclists
will not be detected properly and it may produce a hazardous
as well as fatal situation. During environmental perception,
detection and tracking of dynamic traffic objects can lead
to significant issues. As real-world sensors are corrupted
by noise, detection of moving obstacles are erroneous and
produce uncertainty in the prediction of the correct states of
the detected object. Some current robotics simulators such as
GAZEBO, V-REP incorporate a simplified first order Gauss
Markov model to add noise the the simulated sensor data [8].
However, this assumption produces uncertainty under various
environmental condition which is vital in AV simulation.
Additionally, vehicle dynamic simulation software providers
use perfect sensor modeling (no physical models) to assess
the vehicle functional performance [9]. Thus, high-fidelity
simulation of an AV must incorporate an abstraction of the
sensor error that captures the resultant misinterpretation by
the vehicle’s perception system. Hence, the perception-error
model is the key point of the simulation process as this is
where errors are generated during detection and can cause
variation in decision making.

II. PERCEPTION ERROR CALCULATION
Here, we only consider perception errors associated with

the camera sensor. For object detection, Faster RCNN has
been chosen as state-of-the-art object detector [10]. Inaccu-
rate bounding box is one type of perception errors. When an
object is recognized with a misaligned bounding box, it leads
to an error in localizing the object [11]. In order to model
the bounding box offset, the main inputs required are ground
truth and domain and measurement domain. The ground truth
domain deals with the actual set up, in which object size
is calculated in terms of bounding box’s pixel area. The
measurement domain pertains to the measurement results
obtained from the sensors. Therefore, noise and sensor errors
are part of the measurement domain. The error component is
calculated by subtracting the measured data from the ground
truth as shown in Fig 1.
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Fig. 1. Bounding Box Offset Calculation.

The ground-truth bounding boxes are labeled by top-
left (tl) and bottom-right (br) corner coordinates. These
coordinates are measured in terms of pixel with respect to
the camera local frame. So, the shift in pixel coordinates for
left-top and bottom-right corner gives the measure of error
in detected bounding box, which is defined as:

Etl = [xtl, ytl]d − [xtl, ytl]gt, (1)

Ebr = [xbr, ybr]d − [xbr, ybr]gt, (2)

where Etl and Ebr are errors in pixel coordinates of top-
left and bottom-right corner respectively. d and gt stand for
detected and ground-truth bounding boxes respectively.

III. METHODS USED TO MODEL BOUNDING BOX
OFFSET

A. Error Modeling Using Linear ARMA model

An Auto-Regressive Moving Average (ARMA) of orders
p and q [12] is defined as:

Xt = C + εt +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjεt−j , (3)

where εt is zero-mean white noise with variance σ2, p; q
≥ 0 are integers, ϕ is set of parameters of auto regressive
model, and θ is set of parameters of moving average model.
The generated time series Xt from this model is known as
ARMA(p,q) process, where p corresponds to the order of the
Auto-Regressive (AR) component and q corresponds to the
order of Moving Average (MA) component. ARMA model
is used to predict the future values of a given time series Xt.
In our case, Xt represents the time series of bounding box
offset obtained from (1) & (2).

In time series analysis, an iterative three-stage modeling
approach has been used to find the best fitted time-series
ARMA Model [13]:

(i) Model identification & model selection
(ii) Parameter estimation of ARMA (p,q)

(iii) Model checking
1) Model Identification & Model Selection: This step

determines the stationarity and seasonality of the time series,
which needs to be modeled. In this step, we have to find
the order of the auto-regressive and moving average part. To
identify the order p and q, auto-correlation function (ACF)

and partial auto-correlation function (PACF) are plotted. Gen-
erally, for an auto-regressive process of order 1 i.e. AR(1),
the ACF plot is an exponential decay function. ACF plot for
higher-order auto-regressive processes consists of a mixture
of damped sinusoidal and exponentially decay components.
The ARMA lags cannot be selected solely by looking at the
ACF and PACF. Thus, to choose the best model from a set of
possible models, we can take the help of a model selection
method. The most common model selection method is the
Bayesian Information Criteria (BIC) [14]. The BIC value of
a model is given by -

BIC = −2 ln(L̂) +K ln(n), (4)

where L̂ = maximum likelihood function of the model, K =
number of estimated parameters in the model and n = sample
size (observation). During model selection, the model with
the smallest value of BIC will be chosen.

2) Parameter estimation of ARMA (p,q): This step esti-
mates the p+ q + 2 parameters (ϕ, θ, C, σ2) by the method
of maximum likelihood estimation (MLE).

3) Model Checking: The next step would be to carry
out a test by checking the BIC values to verify whether
the specifications are obeyed by the estimated model. If the
estimation is insufficient, we must build a better model by
returning to step one.

B. Error Modeling Using Nonlinear Auto-Regressive (NAR)
Model

To model a time series data, a linear ARMA model is a
good stepping stone. However, in a real life scenario, a time
series will possess many nonlinear characteristics. Hence, to
deal with such nonlinearities, we have to utilize a nonlinear
auto regressive (NAR) model [15], which can be defined as
follows:

yt = G(yt−1, yt−2, yt−3, ...) + εt, (5)

where y is the variable of interest and εt is the error term or
noise term. The function G corresponds to nonlinear function,
such as neural network, sigmoid network, wavelet network,
etc. To select the best model from a set of possible models,
we can take the help of Bayesian Information Criteria (BIC)
model selection method. The BIC value of a model [16] is
given by:

BIC = (n) ln(SSE/n) + (p) ln(n), (6)

where SSE = sum squared error, n = number of training
samples and p = number of parameters (weights and biases).
The model with smallest BIC is favored when picking from
a few models.

IV. APPLICATION OF THE BOUNDING BOX
OFFSET MODEL IN A SIMULATION PLATFORM

In order to illustrate the application of the bounding box
offset model for camera sensor, we decided to integrate it
with CarMaker [17], for adding noise to its camera object
sensor data. CarMaker is used extensively in the automotive
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industry as a virtual test platform, to develop applications for
longitudinal, lateral and vertical dynamics of the vehicle. This
can be done because CarMaker offers tools to create highly
detailed virtual prototypes of vehicle models along with
very detailed representation of both the static (road network,
buildings, traffic signals, etc.) and dynamic environment
(surrounding traffic, pedestrians, etc.).
However, before a vehicle and sensor model in CarMaker
can be used for testing, we need to ensure that we are able
to control it using an Automated Driving System (ADS).
For this purpose, we have chosen the self driving software,
Autoware [18], developed by Nagoya University.
The basic architecture for simulating autonomous behaviour
of a CarMaker vehicle, with the ADS of Autoware, has
been shown in Fig 2. Sensor Object data is extracted from
CarMaker using it’s APO (Application Online) interface. It
is then packaged into a string and transferred to a ROS node
via TCP/IP socket. Object information, in case of a pedes-
trian, consists of absolute distance and angular displacement
of the pedestrian, relative to the vehicle. Since the error
model is designed for bounding boxes we convert the object
information, which are coordinates relative to the vehicle
frame, into a two-dimensional bounding box relative to the
camera image frame. The error is then added to the bounding
box coordinates, and the object data is recomputed w.r.t.
the vehicle frame. This data is then passed onto Autoware’s
motion planning module to compute the desired velocity
and steering angle commands. These control inputs are then
passed back to CarMaker, via TCP/IP and the APO.

Fig. 2. Simulation Architecture

V. SIMULATION AND RESULTS

A. Dataset

In order to develop the error model we have utilized the
KITTI object tracking evaluation 2012 [19]. The dataset
has been recorded by driving on highways and urban area
around the mid-size city of Karlsruhe. The 2D bounding
boxes for each images have been evaluated for ‘car’& ‘pedes-
trian’classes. The resolution of the images is 1238 × 374
pixels and the frame rate is 10 fps. Two subsets of this
dataset consisting of 314 and 1059 image frames are chosen
for this study. These videos are taken in different condition
like the sunny road with shadow, the urban road with traffic
and highway respectively. These two dataset are denoted as
‘Dataset’1 & ‘Dataset’2 in the following sections.

B. Modeling of bounding box offset using linear ARMA

With the help of the error data generated, as described in
Section II, and the iterative three stage modeling approach,
as mentioned in Section IIIA, the parameters (C, ϕ, θ, σ2)
and the orders (p, q) of the ARMA model are estimated.

1) Dataset 1: ARMA(3,3), ARMA(3,3), ARMA(4,4),
ARMA(3,3) models are obtained as best fitted time-series
models, as they match the displacement errors of x, y coor-
dinates of top-left (xtl, ytl) and bottom-right (xbr, ybr) corner
of the bounding box respectively. The estimated parameters
of these ARMA models are listed in Table I. The combined
time series plots of errors predicted by ARMA models and
actual errors are shown in Fig.3.

TABLE I
PARAMETERS OF ARMA MODELS

Coordinates Constant AR
Coeffi-
cient

MA
Coeffi-
cient

Variance BIC
Value

xtl -1.3010

0.8440 -0.4384

16.9413 1752.1-0.8018 0.6405

0.6583 -0.2880

ytl -3.5303

-0.6465 1.2081

53.3757 2033.80.4427 0.2775

0.3870 -0.1113

xbr 0.8219

-0.2248 0.4904

31.8455 1919.1
0.0200 0.2582

0.3443 -0.2564

0.6796 -0.7707

ybr 0.0874

1.8263 -1.3421

64.1949 2106.6-1.0801 0.6023

0.2419 -0.1993

ACTUAL ERROR
PREDICTED ERROR BY ARMA

Fig. 3. Combined time series plot of errors of top-left and bottom-right
corner coordinates.
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2) Dataset 2: ARMA(1,1), ARMA(3,3), ARMA(3,3),
ARMA(3,1) are obtained as best fitted time-series models,
which match the models that generated the error of of x,
y coordinates of top-left (xtl, ytl) and bottom-right (xbr,
ybr) corner of the bounding box respectively. The estimated
parameters of these ARMA models are listed in Table II.
The combined time series plot of errors predicted by ARMA
models and actual errors are shown in Fig 4.

TABLE II
PARAMETERS OF ARMA MODELS

Coordinates Constant AR Co-
efficient

MA Co-
efficient

Variance BIC
Value

xtl -0.1567 0.9238 -0.3276 78.5534 3134.3

ytl 2.0447

-0.3308 0.7045

59.6750 3028.5
0.0774 0.4325

0.6737 -0.2644

0.3192 -0.2834

xbr -0.5506

0.9161 -0.3631

115.7480 3569.2-0.6704 0.5172

0.6189 -0.2818

ybr -1.1622

0.850371 -0.39681

71.1296 3082.8-0.0014

0.0041

ACTUAL ERROR
PREDICTED ERROR BY ARMA

Fig. 4. Combined time series plot of errors of top-left and bottom-right
corner coordinates.

C. Modeling of bounding box offset using nonlinear auto-
regressive (NAR)

Here, feed-forward artificial neural network (ANN) has
been used to approximate the nonlinear function for nonlinear
autoregressive function. The model predicts the value of the
observation yt (bounding box offset) using past two values of
y with a noise term. The feed-forward ANN with one hidden
layer and bias in hidden and output layer is used to model
the bounding box offset as per the given description.

(i) Input Layer : The bounding box offset vector (X),
obtained in section II is fed into the input layer of the
neural network.

(ii) Hidden Layer : The input layer passes on the value X
to the hidden layer. The number of neurons in hidden
layer can be varied. The output of the hidden layer is
given by:

z = a
(
W 1 ∗X + b1

)
, (7)

where a is activation function (hyperbolic tangent), X
is the input vector, and W 1 and b1 are the weight and
bias vectors of the hidden layer respectively. In our case,
both W 1 and b1 are h × 1 vectors (h = size of hidden
layer).

(iii) Output Layer : The output vector is defined as:

y = a
(
W 2 ∗ z + b2

)
, (8)

where a is the activation function (linear function), z is
the output of hidden layer, and W 2 and b2 are the weight
and bias vectors of the output layer. Here the dimensions
of W 2 and b2 are 1× h and 1× 1 respectively.

We consider different ANN architectures with hidden layer
sizes of 10, 15, 20 and 25 respectively.

Dataset 1: The BIC values obtained from the different
architectures of NARNET are presented in Table III.

TABLE III
PARAMETERS OF NARNET MODELS

Coordinates NARNET
(10)

NARNET
(15)

NARNET
(20)

NARNET
(25)

xtl 827.4 851.57 811.1 876.6

ytl 1202.6 1148.7 1166.2 1208.1

xbr 1050.7 1032.4 1100.2 1006.1

ybr 1216.2 1178.1 1211.0 1207.6

BIC values are smallest for the NARNET with 20, 15,
25 and 15 hidden units respectively, as shown in Table III.
These NARNET models are chosen so that they predict the
models that generate the error data of top-left and bottom-
right corner coordinates. The combined time series plot of
the errors predicted by NARNET models and actual errors is
shown in Fig 5.

Dataset 2: The BIC values for different architectures of
NARNET are listed in Table IV.

BIC values for NARNET with 20 hidden units, 15 hidden
units, 20 hidden units and 10 hidden units are the smallest
ones for the bounding box offsets. These NARNET models
are chosen which predict the models that generated the error
data of top-left and bottom-right corner coordinates. The
combined time series plot of errors predicted by NARNET
models and actual errors is shown in Fig 6.
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ACTUAL ERROR
PREDICTED ERROR BY NARNET

Fig. 5. Combined time series plot of errors of top-left and bottom-right
corner coordinates.

TABLE IV
PARAMETERS OF NARNET MODELS

Coordinates NARNET
(10)

NARNET
(15)

NARNET
(20)

NARNET
(25)

xtl 1971.9 1952 1904.6 1930.7

ytl 1854.2 1841.5 1964.0 1887.3

xbr 2165.7 2173.4 2164.3 2243.1

ybr 1973.9 2004.6 2056.7 2004.1

ACTUAL ERROR
PREDICTED ERROR BY NARNET

Fig. 6. Combined time series plot of errors of top-left and bottom-right
corner coordinates.

D. Comparison of BIC Values

The BIC values of both the linear ARMA model and
NARNET model are listed in Table V.

For both datasets, the BIC values for nonlinear auto-
regressive models are smaller than that of the linear ARMA
models. This seems to suggest that nonlinear auto-regressive
models provide a better representation of the bounding box

TABLE V
BIC VALUES COMPARISON

Coordinates linear
ARMA

NARNET

Dataset 1

xtl 1752.1 811.1

ytl 2033.8 1148.7

xbr 1919.1 1006.1

ybr 2106.6 1178.1

Dataset 2

xtl 3134.3 1904.6

ytl 3028.5 1841.5

xbr 3569.2 2164.3

ybr 3082.8 1973.9

offset than the linear ARMA model.
From the obtained NARNET models, we can generate

instances of bounding box errors, which in turn can be
integrated in simulations of AVs in realistic environments
(see subsection E).

E. Simulation configuration

In order for the error model to be applicable to the
simulated camera images in CarMaker, the resolution of
the CarMaker animation was chosen to be default, i.e.,
1960× 966. Horizontal field of view of the camera sensor is
20◦. The error-free bounding box coordinates for the objects
within the simulated camera frame have been calculated
using the object’s actual distance, the azimuth angle, and the
camera matrix. Different samples drawn from the NARNET
models (obtained in Section D) have been incorporated into
the simulation platform in order to simulate bounding box
imperfections. Fig 7 represents the bounding box for a
detected pedestrian, in CarMaker, without (left) and with
(right) stochastic errors generated from the NARNET model.

Fig. 7. Detected bounding box without and with error.

The distance of the detected object from vehicle is calcu-
lated using the pinhole projection formula, as follows:

d(mm) =
Kf ×H(mm)

Oh(pixel)
(9)

where Kf is the focal length (mm) * pixel density, H is
the actual height of the object in mm, and Oh is the object
height in image in pixel. The distance calculation is carried
out assuming that projection of the 3-D object onto a 2-
D plane is based on the pinhole camera model [20]. This
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is a simplified approach for calculating distances of objects
in images, and requires knowledge of the actual height of
the object. Even though this formula may not be appropriate
for certain real-life applications, our aim is to illustrate
how the vehicle behavior is affected by perception errors.
Therefore, if distance estimation done based on bounding box
dimensions, a more sophisticated formula will also be subject
to similar predicaments if there are errors in the bounding box
generation.

Due to the changes in the bounding box’s position of the
detected object, the perceived distance of the object from the
vehicle and subsequently, the brake-torque of the vehicle is
different from the actual state. This may lead to erroneous be-
havior of the vehicle, potentially with dramatic consequences.
In a more complex traffic environment, involving multiple
pedestrians and vehicles, we can expect a significant effect
of the error in distance profile. To visualize the effect of the
errors on distance and brake-torque of the vehicle in presence
of one pedestrian, 4 samples drawn from NARNET models
have been considered (see Figs. 8 and 9). We generated
the bounding box errors by the NARNET model, since this
models is more accurate than the linear ARMA model (see
Section V-D).

Fig. 8. Distance profile of vehicle in presence of error model.

Fig. 9. Brake profile of vehicle in presence of error model.

VI. CONCLUSION
In this paper, we have modeled imperfections in the bound-

ing box detection using a linear ARMA and a NARNET
model. The NARNET model performs better than linear

ARMA as far as modeling bounding box offset is concerned.
This work shows a novel approach to integrate the error
model into the object detection module of CarMaker, which
helps in generating erroneous bounding boxes. The control
action, i.e., brake-torque applied at the wheel of the vehicle
will vary according to the detected position of the object. The
additional parameters that influence the errors such as various
weather conditions, complex environment, or multiple traffic
objects may lead to significant deviations of the perceived
states from the ground truth. These additional effects will
help us to check the behavior of AV in different test case
scenarios during simulation. A more in-depth study on this
will be carried out in the future, where we will compare
the results from simulations to field measurements on test
circuits.
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