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ABSTRACT 

The motivation for this paper is derived from the fact that there 

has been increasing interest among researchers and practitioners 

in developing technologies that capture, model and analyze 

learning and teaching experiences that take place beyond 

computer-based learning environments. In this paper, we review 

case studies of tools and technologies developed to collect and 

analyze data in educational settings, quantify learning and 

teaching processes and support assessment of learning and 

teaching in an automated fashion. We focus on pipelines that 

leverage information and data harnessed from physical spaces 

and/or integrates collected data across physical and digital spaces. 

Our review reveals a promising field of physical classroom 

analysis. We describe some trends and suggest potential future 

directions. Specifically, more research should be geared towards 

a) deployable and sustainable data collection set-ups in physical 

learning environments, b) teacher assessment, c) developing 

feedback and visualization systems and d) promoting inclusivity 

and generalizability of models across populations. 

CCS CONCEPTS 
• Human-centred computing~Visualization design and 

evaluation methods •Information systems~Data analytics 

KEYWORDS 

Face-to-face classroom analysis, co-located learning, physical 

learning analytics, educational data mining, educational 

technologies 

1 INTRODUCTION 

The field of educational data mining (EDM) is concerned with 

developing models, methods and algorithms originally used in 

data mining to extract and make sense of the large volume of data 

derived from educational settings to provide automated detection 

and analysis (for a review, see [77]). On the other hand, learning 

analytics (LA) refers to the field of measuring, collecting and 

analyzing data from educational settings with the aim of 

quantifying, improving and optimizing learning.  

To date, the majority of EDM and LA studies focus on 

characterizing students when they are interacting with computer-

based educational systems (CBESs), in which a computer system 

is an integral part of the learning process [67]. These studies 

examine human-computer interactions of teachers and students 

within variants of CBESs such as learning management systems 

(LMSs), massive open online courses (MOOCs), intelligent 

tutoring systems (ITSs) etc. In these environments, the learning 

tasks are more structured, the entirety of interactions happen in 

the digital space, and users are often seated or situated right in 

front of a computer screen, making it easier to collect digital and 

physical data with less noise [69], ensuring sufficient fidelity and 

ecological validity. As observed by Berland and colleagues [68], 

the degree of structure in these environments makes it easier to 

infer associations between student behavioral responses and 

learning constructs of interest. For this reason, observations and 

frameworks developed in the research literature of EDM and LA 

are largely based in computer-based educational environments. 

The motivation for this paper is derived from the fact that 

while majority of learning still occurs in face-to-face educational 

settings, there is an under-representation of learning processes that 

do not occur through or are mediated by a computer within the 

EDM and LA research literature [75]. We observed a shift in 

educational paradigms to adopt blended learning models, where 

face-to-face learning is often combined and facilitated with 

technologies, but most LA and EDM studies are fixated on the 

online portions of such learning curriculums, leveraging only the 

digital footprints and online logs of teacher and student 

interactions.  

In face-to-face, co-located learning environments, students 

communicate and interact with their peers via speech, facial 

expressions and body gestures while teachers or facilitators 

monitor these cues and reciprocate accordingly in real-time. 

Examples of such learning environments include project-based 

learning, embodied interaction, constructionist, or simply, 

traditional teacher-students classrooms, each of these with ranging 

degrees of structure in its curriculums. There has been increasing 

interest among researchers and practitioners in developing 

technologies that model and analyze learning and teaching 

experiences beyond computer-based learning environments and 

capturing learner and teacher data beyond digital spaces [69], 

[42]. As such, the term “physical learning analytics” was recently 

coined to refer to research and paradigms which brings learning 

analytics methods and innovations into physical learning spaces 

and attempts to leverage and make sense of physical data to aid 

teaching practices and learning processes [74].  

There exist various comprehensive literature reviews on the 

current state of EDM and LA, its key methodologies and data 
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analysis tools [73], [77], but these tools and technologies are 

primarily developed for computer-based or computer-assisted 

learning or rarely explore using face-to-face physical data in 

learning environments. There are also papers, which focus on 

multi-modal analytics (MMLA) or natural user interfaces, offering 

brief reviews of, but not limited to, face-to-face classroom 

analysis (e.g. [69], [75, 76]) 

In this paper, we focus on tools and technologies designed and 

developed for face-to-face classroom analysis, with a specific 

focus of leveraging from the physical sphere. As far as we know, 

no such review exists at the point of conception of our paper. We 

review case studies that deploy tools and technologies to harness 

behavioral data beyond digital and online logs in face-to-face, co-

located learning environments, with the purpose of quantifying 

learning processes and supporting improvement in learning and 

teaching in an automated fashion. We identify current trends, 

research gaps, challenges and future directions by categorizing 

case studies according to their data sources, data modalities, 

outcomes, targets of assessments, deployment settings, units of 

analysis and the degree of maturity of these technologies and tools 

developed. The following research questions (RQ) motivate the 

direction of the paper:  

• RQ1: What are the types of data harnessed in automated 

face-to-face classroom analysis?   

• RQ2: What are the research objectives and outcomes in 

automated face-to-face classroom analysis?   

• RQ3: What is the maturity of such automated tools and 

technologies in terms of application and evaluation?  

• RQ4: What are the open issues and main challenges of 

applying automated techniques to face-to-face classroom 

analysis? 

The rest of the paper is structured as follows. In Section 2, we 

outline our definitions of face-to-face classroom, physical data, 

and automated analysis, our methodology and inclusion/exclusion 

criterion for the selection of case studies, and the frameworks we 

adopted to categorize, evaluate and synthesize findings from the 

reviewed studies. In Section 3, we describe the trends we 

observed from reviewing the case studies, with emphasis towards 

RQs 1 to 3. We then focus on RQ4, discussing trends, challenges, 

and future directions in the field of face-to-face classroom 

analysis in Section 4, followed by our conclusions in Section 5.  

2 EXPERIMENTAL AND COMPUTATIONAL 

DETAILS 

2.1 Definitions 

2.1.1 Definition of face-to-face classroom. A face-to-face 

classroom can be defined as a “real-world, non-computer 

mediated environment” differing from computer-based learning 

environments “where the computer features as an active 

component in the learning process” [75]. Such learning 

environments include traditional lectures, open-ended hands-on 

activities and collaborative learning activities. Most in-class 

discourse, interaction and activity amongst students and between 

teachers and students should occur in the same physical space and 

in real-time. As such, we also include learning contexts where 

learning occurs largely in the real-world but can be facilitated by 

computer interfaces such as table top interfaces (e.g. [52]). 

2.1.2 Definition of automated analysis. In this review, we 

define automated analysis as the use of custom scripts to cluster, 

model or predict teaching and student behaviors. The selected 

case studies included some form of self-developed scripts, use of 

existing toolkits (such as Linguistic Inquiry Word Count [LIWC] 

and OpenSmile, to name a few) or custom tools adapted from 

existing APIs and SDKs (e.g., Kinect for Windows) to conduct 

analyses. Many studies also used machine learning algorithms 

(mainly, supervised) to predict learning outcomes or cluster 

classroom activities. Case studies ranged from developing 

algorithms to analysing and classifying face-to-face large-scale 

classroom data (e.g., [15]) to predicting and modelling students’ 

behaviours within small groups or dyads (e.g., [63]). 

2.1.3 Definition of physical learning analytics. The term 

“physical learning analytics” was recently coined by Martinez-

Maldonado and colleagues [74] to understand the theoretical 

foundations of adapting similar technologies and philosophies in 

MMLA to co-located learning scenarios, bridging between the 

physical and digital spheres of a learning space. As we have 

outlined, the physical aspects of learning activities (e.g. team/pair 

dynamics, teachers’ actions) must be emphasized. For this review, 

we focus on studies that collected and analysed data from the 

physical sphere (e.g. video and audio recordings of the face-to-

face classroom lesson) but can be combined with data from the 

digital sphere (such as natural user interfaces log and digital pen 

strokes) in cases where learning is accompanied by such devices.  

2.2 Search Process and Selection of Case Studies 

We utilized a three-pronged approach to select studies for 

review. First, relevant journals and conference proceedings, such 

as journals and proceedings of known conferences targeted at 

showcasing advancements and innovation in the field of learning 

sciences and learning analytics, were shortlisted and searched 

using a targeted search strategy. We include the following 

journals: Journal of Educational Data Mining, Journal of Learning 

Analytics, International Journal of Learning Sciences, 

International Journal of Artificial Intelligence in Education, 

Journal of Computer Assisted Learning, British Journal of 

Educational Technology, and the Computers in Human Behavior, 

and shortlisted the following conferences: International 

Conference of the Learning Sciences, International Conference on 

Multimodal Interaction, International Conference on Learning 

Analytics and Knowledge, International Conference on 

Educational Data Mining, International Conference on Artificial 

Intelligence in Education, International Conference of Computer-

Supported Cooperative Work, and the International Conference of 

Computer-Supported Collaborative Learning. We carried out the 

secondary search by combing through the bibliography sections of 

articles retrieved from the targeted search and identified additional 

articles. For the third and final approach, we commenced the 

informal search by querying Google Scholar with the following 

search keywords: (face-to-face OR co-located OR physical) 
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classroom analysis AND learning analytics. We restricted our 

searches to articles published within 2010 to July 2018.  

To map out and understand the design space of learning 

analytics in physical learning settings, we adopted a rather liberal 

inclusion/exclusion criterion to maximize the number of reviewed 

studies. Any peer-reviewed publication that provided accessible 

information on their methods, data collection set-up and metrics 

was included in our review. We include papers that utilize or 

harness at least one form of data from the physical sphere and 

perform or outline some sort of automated analysis of the data. 

Selected studies may include a combination of physical data 

sources and digital data sources. However, we exclude studies 

which harnessed only information from digital realms (e.g. solely 

relying on dashboard logs) from our review as they do not meet 

our criteria of physical data analysis as outlined in Section 2.1.2.  

In total, we selected 66 studies based on our search strategy 

and inclusion/exclusion criteria. 

2.3 Theoretical Framework 

We used a variety of theoretical frameworks to categorize, 

analyze, and review the selected case studies. To answer our first 

three research questions (RQ1-3), we coded the studies along 7 

dimensions: (1) types and numbers of modalities and (2) data 

sources harnessed, (3) the types of outcomes and (4) targets of 

assessment examined, (5) the settings and (6) units of analysis the 

in which the tool/technology was deployed, and (7) the level of 

maturity of innovation. We explain each dimension and their 

theoretical underpinnings in this section.  

2.3.1 Modality types and data sources. The field of MMLA is 

aimed at harnessing multiple data modalities and combining data 

processing techniques to build richer, more comprehensive 

understanding of learning processes. MMLA researchers have 

explored: (1) behavioral data streams of motoric captures of head 

pose, eye gaze, hand gestures, facial expressions and 

physiological captures of heart, brain, skin and respiratory 

systems and (2) contextual environmental (e.g., location, 

weather), social (e.g. proximity) and situational (e.g., activity) 

data streams [72]. As it was important for our review to 

differentiate between data collected from the physical and digital 

realms, we adapted categories from the multimodal data 

taxonomy outlined by Di Mitri and colleagues [72] and divide the 

case studies based on from whom the data was collected (teacher, 

student, and classroom) and the modalities of data being collected 

and analyzed (audio, video, biomarkers, various combinations of 

audio/video/biomarker with or without digital logs).  

2.3.2 Outcomes and Targets of Assessments. Based on the 

research outputs, we divided each case studies in terms of what 

learning or teaching outcomes were investigated. We 

acknowledge that most studies are early developments and 

deployments, hence it is challenging and impractical to define 

strict boundaries of stakeholders for these tools, thus we chose to 

define target of assessment (whether teacher or student or both 

i.e. classroom outcomes are being assessed). 

2.3.3 Settings and Units of Analysis. Given that the purpose of 

our review is to understand the maturity level and design space of 

physical learning analytics, we were interested in the types of 

settings (ecological versus laboratory) these pipelines and tools 

were tested or deployed in. Most studies in the field of MMLA 

leveraged laboratory studies due to complex data collection 

setups, while learning analytics tools applied in CBESs are 

usually deployed in-the-wild due to the structured nature of tasks 

and learning paradigms. Data collection during ecological studies 

took place in-the-wild within the learning sessions, while 

laboratory studies were defined as controlled environments, often 

with set-ups for high-fidelity data collection and participants 

assigned into conditions depending on research objectives and 

participated in tasks related to but not part of their curriculum.  

Based on different sample sizes of our selected studies, we 

also divided the studies according to units of analysis (individuals, 

dyads, groups and classroom-level) to understand the potential 

scale of these tools and technologies. Individual indicates data 

from only one student or teacher is analyzed or assessed at a 

single point in time while dyads and groups usually refer to pairs 

or groups of students being analyzed at a single point in time, and 

finally at classroom-level, data from all students and teacher(s) are 

collected simultaneously.  

2.3.4 Level of Maturity. This dimension refers to the degree of 

development and deployment of the tools, technologies and 

pipelines in the selected case studies. Clow [71] describes the LA 

Cycle of four iterative steps, where learners’ gaps and needs for 

technological/analytics support are first identified, then data is 

collected. After which, the data generates metrics and 

visualizations to create interventions to impact and influence 

learners. This cycle is similar to the Multimodal Learning 

Analytics Model (MLeAM) [72], a conceptual model to evaluate 

progress of MMLA tools and technologies. The MLeAM consists 

of four processes: sensor capturing which refers to the: 1) 

collection of multi-modal data streams, 2) manual labelling and 

annotation of data collected, 3) application of machine learning to 

develop models, generate prediction labels and validate 

generalizability of models on new data through iterations, and 

lastly, 4) feedback interpretation where generation of feedback 

drives positive behavioral change in students and teachers. Within 

the metrics stage of LA cycle and the Annotation and Machine 

Learning processes in MLeAM, we observe that automated 

analysis and metrics generation comprises of 2 different stages of 

maturity namely, (a) development of automated metrics and (b) 

generation of visualizations and insights (Table 1). 

Thus, we divided the studies into 4 levels of maturity: sensing 

and capturing data where papers describe a certain data collection 

set-up within a small controlled sample of students with little to 

no analysis of data collected, generation of automated metrics 

where studies demonstrate the possibility of using automated 

analytic techniques to cluster certain learning and teaching 

processes and outcomes, visualizations and elucidations where 

studies provide insight to the learning/teaching process by 

elucidating how and why certain behavioral differences can 

account for the difference in learning gains, expertise and teaching 

abilities or fit developed models to new data and lastly, provision 

of feedback for behavioral change in which tools and technologies 
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are deployed over multiple sessions and provide feedback with the 

aim of improving learning or teaching processes.  

Table 1: Mappings between Clow’s Learning Analytics Cycle, 

MLeAM and our proposed levels of maturity. 

Learning 

Analytics Cycle 

Our Proposed Levels 

of Maturity 

MLeAM 

Processes 

Learners Sensing and capturing 

data 

Sensor 

capturing 
Data 

Metrics Generation of 

automated metrics 

Annotation  

+  

Machine 

Learning 

Visualizations and 

elucidations 

Interventions Provision of feedback 

for behavioral change 

Feedback 

interpretation 

3 RESULTS AND DISCUSSION 

3.1 Types of Modalities and Data Sources (RQ1) 

To understand the nature of data utilized in the reviewed 

studies, we coded each study according to the types of modalities 

and types of data sources (see Table 2). Most studies extracted 

and analyzed data from students. Out of 66 studies, 41 (62.1%) 

considered data streams collected from students, 11 (16.7%) 

studies collected data from teachers, while the remaining 14 

(21.2%) studies collected and analyzed data at a classroom level 

from both teacher and students. 

The studies differed in the modalities of data collected from 

their target population, be it student, teacher or at classroom level. 

A total of 4 major modalities groups were identified and 

categorized as audio signals, video recordings, biomarkers and 

digital data. More specifically, the audio modality consists of 

classroom discourse, teacher speech, student speech; while the 

video modality consisted of face expressions, body movements, 

head pose, hand gestures and posture. The modality of biomarkers 

included measures such as eye tracking, EEG, electro-dermal 

activation and thermal signatures from heat sensors (e.g. in [9]). 

The last modality of digital behaviors included innovative use of 

location tracking from wearable badges and action logging from 

manikin in [18] or integration of user interfaces in curriculum 

such as tabletop interfaces [52] [53], digital pen strokes [34-36], 

presentations slides (e.g. [10], [11], [19]). 

Table 2: Overview of studies concerning their use of modality 

and data source.  

Data 

sources 

No. and type of 

modalities 

References 

Teacher 1 (Audio only) [5], [6], [7], [8], [15], 

[17], [33]  

1 (Video Only) N/A 

1 (Biometric-only) [12], [41] 

2 (audio and video) N/A 

2 (audio/video + 

another modality) 

N/A 

More or equal to 3 [42], [43] 

Student 1 (Audio only) [21], [26], [27], [64] 

1 (Video Only) [25], [29], [44], [47], 

[48], [52], [57], [62] 

1 (Biometric-only) [3], [9], [14], [24], [40], 

[53], [9] 

2 (audio and video) [2], [11], [20], [30], [39], 

[51], [55], [56] 

2 (audio/video + 

another modality) 

[1], [18], [28] 

More or equal to 3 [10], [19], [31], [32], [34-

37], [58], [63], [65], [66]  

Classroom  1 (audio only) [13], [16], [22], [23], 

[38], [49], [50], [59], [60]  

1 (Video Only) [46], [61], [62]  

1 (Biometric Only) [4] 

2 (audio or video) N/A 

2 (audio/video + 

another modality) 

[45] 

More or equal to 3 N/A 

 

Audio is more frequently explored in single modality analysis 

when data is collected from teachers or at the classroom level, 

while a wider distribution and combinations of modalities can be 

observed for data collected from students. For biometric 

measures, newer studies published from 2017 to 2018 frequently 

investigate EEG for single modality analysis while eye-tracking 

appears to be a recurrent choice for single modality analysis for 

earlier studies.  

Notably, out of 66 papers, 26 (39.3%) of them leveraged a 

combination of modalities instead of focusing on only one 

modality. Due to the ease of collecting video and audio data in 

physical classrooms, we observed that amongst the 25 studies, 

most studies (n = 21) explored amalgamations of audio-visual 

features, while 2 studies attempted to harness the fusion of either 

audio or visual features with eye-tracking [1], [45], and the 

remaining two studies harnessed location sensors [19] and visual 

features of presentation slides [28] respectively. Amongst studies 

that attempt to leverage 3 or more modalities, the most common 

combinations were audio-visual features with digital behavior, 

followed by audio-visual features with biomarkers, with eye 

tracking being the mose frequent choice. In most studies, 

researchers tend to leverage a fusion of audio-visual features with 

digital log behaviour as equipment was easy to deploy, 

supplemented the learning actitivies or were existing part as the 

curriculum, such as a digital pen [34-36] or presentation slides, 

[10], [11].  

3.2 Types of outcomes and assessment targets 

(RQ2) 
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To understand the research objectives in the selected studies, 

(RQ2), we labelled each tool, technology or pipeline in terms of 

the target that was assessed and the types ot outcomes (see Table 

3).  Some studies present overlapping scenarios assessing multiple 

targets and outcomes within one study. For example, we classify 

understanding classroom activities and instructional segments 

under teacher and classroom outcomes, depending on the data 

source and research objective of the study (e.g. [42, 43], [49]). 

Such studies showcase instances of pipelines and tools that 

automatically classify a set of classroom activities, such as 

lecture, group work, pair work, question-and-answer, across 

different classroom settings ranging from elementary school 

classes to university classes by modelling teachers’ actions.  

Amongst the case studies, the distribution of outcomes 

investigated is skewed towards student outcomes with the 

majority related to assessing students for their individual 

performance across different domains such as presentation 

quality, mathematics expertise, increase in understanding of study 

material (measured by pre- and post-questionnaires). We observed 

that in some studies, in addition to collaborative group/dyadic 

outcomes, researchers also analyzed and predicted individual 

outcomes such as expertise and performance (e.g., [34-37]). 

Moreover, we acknowledge that student outcomes can be a proxy 

for teacher assessment and an indicator of teachers’ effectiveness 

(e.g. student attention). However, we chose to classify only 

studies that specifically assessed teachers on their actions, such as 

authenticity of their questions [17], [23] and instructional quality 

[12], under teacher outcomes. As such, coupled with our previous 

observations in Section 3.1, we notice that tools and technologies 

developed for face-to-face learning spaces are currently more 

focused on mining physical data from students and making 

learning processes visible so that teachers can scale and regulate 

their strategies according to learners’ responses. 

We observe a consensus that audio indicators are most useful 

when automatically classifying classroom activity type (e.g. in 

universities [38], elementary schools [60] and middle schools 

[16]). In contrast, indicators of performance outcomes (be it 

individual or collaborative) are understandably more varied. 

Across different contexts, differentiation of expertise has been 

found to correlate with the following audio (verbal and non-

verbal) indicators: lesser linguistic displays of uncertainty [37], 

[64], and more instances of dominance [37], [51]. On the other 

hand, indicators of collaboration quality are largely dependent on 

learning contexts, but often explored via indicators of synchrony 

and proximity. Some studies observed physical proximity [55, 

56], while others investigated synchrony in speech [26], hand or 

body gestures [20], [52], [62], or eye gaze [53].  

Finally, despite the focus on affective computing 

methodologies in LA for CBESs, we note a lack of affective 

computing studies on students’ and teachers’ emotions in face-to-

face physical learning environments. Of note, only one study [63] 

investigated affective states beyond engagement/attention and  

disengagement. Other studies focus on the cognitive state of 

attention to develop systems to help teachers more effectively 

monitor large classes and adapt accordingly.  

Table 3: Overview of studies in terms of their targets of 

assessment and types of outcomes. 

Target of 

assessment 

Types of outcomes References 

Student  Student emotions, 

engagement and 

attention 

[3], [14], [24], [40], 

[45], [47], [48], [57], 

[63], [66] 

Student attendance [3], [9], [25], [29] 

Collaborative team [14], [18], [30], [34], 

[35], [55], [56], [58] 

Collaborative dyadic [14], [20], [26], [52], 

[53], [62] 

Individual 

performance 

[1], [3], [10], [11]. [19], 

[21], [25], [27], [28], 

[31], [32], [35-37], [39], 

[41], [51], [63-66] 

Modelling student 

actions 

[2], [18], [25], [30], 

[35], [44], [46], [54], 

[61], [63], [66] 

Teacher Instructional quality [5-7], [12], [17], [23], 

[49], [50], [59], [61]   

Modelling of teacher 

actions 

[33], [42], [43] 

Classroom Teacher-student 

rapport 

[4], [12], [22]. [45], 

[46], [49], [50], [61] 

Modelling classroom 

activities 

[9], [13], [15], [16],  

[38], [42], [43], [59], 

[60] 

 

3.3 Settings, units of analysis and level of 

maturity (RQ3) 

Researchers have looked at different units of analysis (i.e. 

dyads, groups or classroom level) across controlled laboratories 

studies or ecological studies (see Table 4). We noticed a balance 

between the use of laboratory and ecological studies. To our 

surprise, we reviewed a sizeable number (n = 21; 31.8%) of 

ecological studies at collecting and analyzing data at the 

classroom level. The distribution of modalities leveraged is as 

follows: 8 studies harnessed video analytics (i.e. classroom videos 

in [29], [45-48], [57], [61]), 8 studies utilised audio signals (i.e. 

clasroom discourse in [13], [15], [22], [23], [49], [50], [59], [60]), 

2 studies leveraged biomarkers only (i.e. EEG in [4], [14]) and the 

remaining 4 studies utilized multimodal methods and innovations 

in proximitiy, motion and heat sensors [9], [42], [43]. These 

ecological studies and the distribution of modalities leveraged 

highlight the increasing potential and feasibility of applying state-

of-the-art technological solutions to collect different data streams 

and develop automated tools for real-life, ecological classroom 

analysis. Even though we only observed 1 ecological dyadic 

study, we identified that most of the dyadic lab studies recruited 

actual students and administered realistic educational tasks that 

matched their curriculum and were evaluations of interfaces and 
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set-ups designed for capturing signals during learning in real-time 

[52], [63], [65-66]. 

Table 4: Overview of Papers Utilizing Lab or Ecological 

Studies and Their Respective Units of Analysis. 

Type of 

study 

Unit of analysis References 

Laboratory Individual [1], [2], [32], [41], [64] 

Dyads [20], [26], [52], [62], 

[63], [65], [66]  

Groups (3 to 6 

people) 

[18], [27], [30], [31], 

[34-37], [55], [56]. [58] 

Classroom/Lecture 

level 

[3], [24], [25], [40] 

Ecological Individual [5-8], [12], [16], [17], 

[21], [33], [39] 

Dyads [53] 

Groups (3 to 6 

people) 

[10], [11], [19], [28]  

Classroom/Lecture 

level 

[4], [9], [13], [14], [15], 

[22], [23], [29] [42-50], 

[57], [59-61],  

 

To assess the maturity of the reviewed tools and technologies, 

we coded the outcomes of each study reviewed according to the 

end-goal achieved at the end of each study reviewed study (see 

Table 5). Studies under Sensing and Capturing Data often exist as 

descriptive papers of methodologies and position papers with 

informal testing and experiments within laboratory settings. These 

papers (3%) often serve as background papers to provide readers 

with comprehensive information of the innovative set-ups and 

pipelines employed (e.g. the set-up described in [30] was 

evaluated and deployed in [18] while experimental pipeline 

described in [45] was used in [46-48]).  

Under Generation of automated metrics, we observed that 

studies often showcase the potential of leveraging, customizing 

and adapting existing toolkits, APIs and SDKs to mine, cluster, 

monitor and model student, teacher or classroom activities and 

behavior. Research objectives in these studies often revolve 

around exploring if certain low-level motoric or physiological 

features are useful predicting or clustering different types of 

performance or learning outcomes. These studies often utilized 

machine learning algorithms (mainly, supervised) to classify 

outcomes and cluster classroom activities.  

We noticed several studies that attempt to develop tools and 

pipelines to automate human coding (and provide automated 

metrics of) traditionally human-annotated performance feedback 

(e.g. predicting instructional quality through eye tracking in [12], 

classroom emotional climate through low-level audio cues in [22] 

and authenticity of teacher’s questions through audio 

transcriptions [23]). As the provision of feedback or visualizations 

are beyond the scope of these studies, they are categorized under 

the current level of maturity (Automated Metrics) instead of the 

subsequent levels. A total of 45 studies (68.2%) were mapped to 

this maturity level.  

Next, the 17 studies (25.8%) that fall under the maturity level 

of visualizations and elucidations typically showcase results that 

differentiate and make sense of how students learn, e.g., 

behavioral differences in reasoning strategies in project-based 

learning [65] and embodied-interaction learning [1]. Importantly, 

these studies not only leverage data to cluster behavioral groups, 

they attempt to elucidate and explain motoric (in speech, face and 

body) and physiological differences between different levels of 

student or teacher competencies to make learning and teaching 

processes more visible. Studies in this category often attempt to 

answer the research question of how and why certain behavioral 

differences captured by the 4 different modalities (audio, video, 

biomarkers and digital) can account for the difference in learning 

gains, expertise and teaching abilitieS. Studies that provide 

meaningful visualizations of student (e.g. location and space 

usage visualization in [18]) and teacher activities (e.g. 

orchestration graph in [43]) but exclude investigations of 

effectiveness of such visualizations are also categorized under this 

level of maturity. 

Finally, we categorized tools and technologies that act on 

generated insights and provide feedback with the intention to 

improve learning and/or teaching behaviors or validate and 

generalize developed across different populations under Provision 

of Feedback and Iteration. We only managed to shortlist 2 studies 

(3%). In these studies, varying types of feedback were provided 

and evaluated for their effectiveness for learning and/or teaching 

outcomes. For example, researchers in [59] investigated if 

providing teachers with a post-hoc automated metric of active 

discussion time would result in a change in teaching strategies to 

increase productive dialogue in the next class. Ideally, the tools 

and technologies under this maturity level should undergo 

iterative processes within and between cohorts for validation and 

generalizability. However, we recognize the limitation in 

resources to carry out iterative processes and validation studies, 

hence, tools tested on small populations which provided 

actionable feedback with the overarching aim to improve students 

and teachers’ outcomes (e.g. [32], [59]), were categorized under 

this maturity level. 

Table 5: Overview of the Distribution of Case Studies Across 

Maturity Levels. 

Level of maturity References 

Sensing and Capturing Data [30], [45] 

Generation of Automated 

Metrics 

[3], [5-13], [15-17], [19-

27], [29], [31], [33], [38-

40], [41], [44], [46], [48], 

[49], [50-53], [55-58], [60-

62], [64] 

Visualizations and 

Elucidations 

[1], [2], [4], [14], [18], [28], 

[34-37], [42], [43], [47], 

[54], [63], [65], [66] 
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Provision of Feedback and 

Iteration 

[32], [59] 

4 DISCUSSIONS 

4.1 Current Progress and Challenges (RQ4)  

In our review, there was an overwhelming number of studies 

which focused on garnering data from students and analyzing 

student-related outcomes. The spotlight on learner-centric 

technologies and dearth of studies on teacher practice was noted 

by many researchers [42]. We observed that many EDM and LA 

studies were directed at helping teachers monitor or change 

students’ behaviors, instead of helping teachers monitor and 

reflect on their teaching behaviors. This is precedent as trends of 

education paradigms point towards the importance of student-

centric learning [72]. This is similarly reflected in how most 

studies within the EDM and LA community concentrated on 

collecting and analyzing data from students [68]. 

Given the unpredictability and unstructured nature of face-to-

face classroom environments, it is savvy for researchers to harness 

the advantage of multimodality in order to more accurately model 

and investigate learning processes in these environments. The 

review reveals promising results of utilising a myriad of 

approaches ranging from traditional methods of audio and visual 

features to biomarkers and movement markers such as EEG and 

accelerometry. However, the small sample size present in most 

studies reflect how collecting data at a large scale is still 

significantly impeded for researchers within the realm of face-to-

face classroom analysis. Perhaps this is why during our review, 

most ecological studies held at classroom-level, utilised only one 

modality, exclusively video or audio, and even EEG. The reliance 

on multiple modalities neccessitates complex set-ups which may 

interfere with learning processes, making them impractical and 

cumbersome to deploy in realistic learning environments.  

Interestingly, within the handful of studies that leverage data 

from teachers, the researchers more often utilised the audio 

modality, than when collecting data from students. Firstly, this is 

in line with the research objective to assess and provide feedback 

to teachers’ with regard to their instructional quality, as audio 

information contains a wealth of verbal, non-verbal, 

conversational and linguistic data. In addition, audio information 

can be easy to collect; from a lapel microphone attached to a 

teacher, with minimal obstruction to the teaching activities. From 

our personal experiences, utilising audio modality alone was 

sufficient at achieving an acceptable accuracy when predicting 

teachers’ ability to facilitate classroom interactions [22]. Apart 

from developing better analysis and tracking techniques and 

sensors, future work should also concentrate on methods that 

support practical and sustainable data collection and explore 

optimal combinations of modalities most relevant for different 

learning environments.  

Our review reveals that analytics tools geared towards 

visualizing and giving feedback on learning and teaching 

processes in a classroom are not common. Other researchers have 

also commented on how current and existing developments are 

focused at the first stage of gathering and analyzing data from the 

learning environment [42], [65]. Most of the reviewed studies 

applied state-of-the-art techniques to mine, analyze, model and 

cluster data of real-world classrooms. These studies have shown 

that subtle differences (in speech, face and body) could be 

automatically detected, analysed and translated into insights that 

make learning processes in physical classrooms more visible. For 

example, a study on nursing simulation [18] leveraged the 

pioneering use of localization sensors, in combination with a 

digital manikin and video recordings to detect and visualize 

students’ actions and behaviours. From these visualizations, the 

researchers were able to differentiate significant behaviours that 

differentiated a low and high performing group.  

Innovations that provide interventions and feedback derived 

from these distinctions to improve low-performing groups is 

largely underdeveloped in this field. Notably, a recent study by 

Ochoa and colleagues [32] harnessed audio, video and visual 

quality of slides to create an automated feedback system to rate 

students on their verbal presentations. The effectiveness of such a 

system was not reported. Similarly, teacher interventions guided 

by data insights appear to be infrequent. In fact, only one study 

[59] designed a subsequent teacher intervention, following 

insights derived from the speech discourse data of students and 

teacher. Another study [43] generated an orchestration graph; 

although its impact on teaching styles was beyond the scope of the 

study, such an approach underlines a way of making outputs of 

face-to-face classroom analysis more intepretable. Given the 

current state-of-the-art, these studies showcase the promising 

potential of harnessing learning analytics to create useful feedback 

and visualization systems for both students and teachers to 

optimize learning and teaching processes in the future. 

The current progress and focus on collecting, validating, and 

optimzing data collection and analysis is hardly surprising as 

automated assessment and feedback systems have to overcome 

realistic, noisy, live learning environments, model the activities 

taking place, and accurately predict outcomes, in order to provide 

feedback. The challenge becomes increasingly difficult and harder 

to scale as the classroom size increases and activities become 

more complex. Currently, automated systems are sufficient for 

research (such as understanding logistical difficulties systems 

have to overcome) and knowledge building (such as 

understanding differences between learners, testing conceptual 

artifacts) but lack a certain degree of accuracy and reliability to 

provide automated feedback to teachers and students. Taken 

together, the current state-of-the-art has demonstrated possibilities 

of leveraging technologies for face-to-face learning analysis and 

holds much promise for future development in terms of 

developing fine-grained analyses, minimising errors, and 

optimizing performance measures of these automated methods.  

4.2 Future Directions 

We now turn the discussion to considering potential directions 

real-life, physical classroom analysis research can take. First, 

since the inception of ‘Internet of Things’ technology, new 

technologies and techniques are being devised to generate and 
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handle volumes of big data from different devices and sources. 

Similarly, the adoption of devices and sensors for thermal 

signatures, mobility and location can be utilized in attaining 

deeper insights in terms of visualizing learner’s and teacher’s 

movements and actions, especially in ecological studies. Such 

methods have been preliminarily explored in [9], [18] and [43]. 

Due to the affordances of mobile devices, many classrooms are 

integrating digital devices such as tabletop interfaces and tablets, 

thus, incorporation of such technologies will be useful for 

collecting data in learning settings which utilize both digital and 

physical spaces such as blended learning, flipped classroom and 

team-based learning. In addition, we suggest more research to be 

geared towards understanding and exploring how adoption of 

devices and sensors can make learning more accessible and 

inclusive to people with disabilities. Despite uptake and adoption 

of devices and sensors in classrooms, creating and understanding 

learning experiences for the disabled populations remains a 

largely unexplored area. 

Notably, the incorporation of these new technologies should 

not impede or make learning less accessible. At present, as 

observed above, the challenges associated with optimal data 

collection within co-located, real-life learning spaces still impede 

researchers and much work is required in the field to simplify and 

customize practical, deployable data collection processes, and 

methods that answer the specific needs of each type of learning 

environment. Depending on research and practical objectives, the 

incorporation of IoT devices may be more suitable for studies 

which look at creating visualization and feedback systems.  

Within the field of online learning analytics, studies which 

utilize deep learning techniques, though limited, outperform the 

ones obtained with traditional machine learning algorithms [75]. 

From our review, there is ostensibly a lack of studies that utilize 

deep learning algorithms. This is unsurprising as the 

understanding of how deep learning algorithms can benefit or 

impact the current field in physical or online spaces has yet to be 

fully established. Nevertheless, deep learning techniques have 

been shown to be useful in the research areas of audio processing 

(speech or non-speech) and computer vision, notably the two 

modalities which researchers in this field most commonly rely on 

to collect data from noisy live classroom. Thus, harnessing deep 

learning methods could offer substantial advancements to the 

current field of physical classroom assessment.  

As observed, the majority of reviewed studies focused on 

developing and validating predictors or classifiers of learning 

behaviours or student outcomes. However, of all the studies we 

reviewed, only one study [50] examined the generalizability of 

their developed models across different subpopulations of urban 

large-city and rural small-town classes. This observation is 

expected as we similarly noted that the small sample sizes in 

many studies represent the significant impediments faced by 

researchers. However, for models to be applicable to new, larger 

and more diverse data, more work has to be directed toward 

investigating and testing the generalizability of developed models 

in the future. Predictive features that apply for a certain 

population may not be applicable to other populations and such 

variations between populations differentiated by socio-economic 

status, race, language and region, could cause sufficient deviations 

from developed models, leading to unfitting conclusions and 

biases. This could especially be the case for emotion models, as it 

is well-documented that the interpretation and perception of 

emotions differ across different populations. We observe an 

emphasis on participants from Western, industrialised and 

democratic populations, and acknowledge that there is much room 

for improvement in terms of setting up more diverse shared data 

corpus, in order to aid transnational collaborations and cross 

cultural validation.  

5 CONCLUSION 

Taken together, our review paints a relatively young field 

within the EDM and LA community with regard to face-to-face 

classroom analysis. The case studies reviewed a strong focus on 

learners and promising results despite the various difficulties in 

collecting and analyzing noisy live classroom data. Our current 

review suggests that ongoing and future research in this field has 

many potential directions, such as moving forward to feedback 

and visualization systems, utilising multi-modalities in ecological 

studies, incorporation of mobile technologies and sensors to 

collect data for learning contexts that take place in digital and 

physical spaces, creating more deployable and sustainable set-ups 

for data collection, developing data corpus and models for cross-

cultural validation and leveraging the power of deep learning 

techniques.  
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